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Abstract. We use a generalized diffusion equation to derive theories for the dielectric response
of materials exhibiting fractal dynamics. Earlier results for the relaxation of charge carriers on
fractal aggregates and fractal surfaces, as well as by fractal time processes, are obtained by
simple scaling arguments. It is arpued that the existence of cut-offs to the fractal structures and
processes leads to dielectric response functions of the Cole~Cole form for bound charge carriers
and of the Davidson-Cole form for quasi-free charge carriers. A novel expression is proposed
for the case of a convolution of two fractal processes. These response functions are compared
with other theoretical treatments and their refevance for experiments is assessed. .

_ 1. Introduction

It is by now well established that power-law relations in the frequency and time domains are
a common feature of the dielectric properties of virtually all materials [1]. The existence of
-these power-law relations suggests a self-similarity in the underlying physical processes and
it is therefore not surprising that fractals have been invoked repeatedly as an explanation
of the dielectric response (see [2] and references therein). There exists a large literature on
this subject which deals with the dielectric properties of fractal aggregates [3, 4], anomalous
diffusion [3, 8], percolation clusters [7-9], fractal time processes [10, 11] and fractal surfaces
. [12-18] as well as general fractal circuits [19]. Considerable effort has recently been devoted
to the study of the relationship between the fractal approach and previous empirical and
theoretical relations [20,21]. '
In this paper we elucidate the relauonsmp between the various fractal approaches to
the dielectric response and propose a closed form for the response funcnon of a fractal .
_process with an upper cut-off.  We make use of a"generali;ed diffusion equation [22,23]
and-show that in the case of fractal processes the results can be expressed in the formalism
of fractional calculus [24]. The methods used to obtain the dielectric response function are
briefly reviewed. Capacitive as well as conductive processes are considered. Subsequently,
in section 3 we consider the special cases of fractal aggregates, fractal surfaces and fractal
time. The effects of cut-offs to the fractal processes are of crucial importance for obtaining
response functions that can be compared to experimental data. In section 4 we treat the effect
.of two coexisting fractal 'processes' with different cut-offs, in the same material. Various
. approaches to the derivation of the dielectric response in th:s case are possible. Finally,
in section 5 the main results of the paper and their posmblc expenmental verification are
discussed.
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2. Basic formalism

The motion of charge carriers in disordered materials can often be described as a diffusive
process. The motion of a single charge carrier between localized states is then modelled as
a discrete random walk., Here we are interested in the average behaviowr of the physical
quantities, which is the result of the average motion of many charge carriers. Hence, the
effects of configurational averaging on the transport process are extremely important.

The configurational averaging leads to a generalized master egunation if the microscopic
trausport process in each configuration is taken to be described by a master equation [251.
A peneralized diffusion equation can be obtained as the continuum limit of the generalized
master equation {2,23,26]. The case of electrical transport under an applied electric field,
E(r), was treated by Leal Ferreira [23] and oihers (see, e.g. [22]). Butcher [22] obtained
the constitutive relation for the particle current density: '

Jo(r, 1) = _-/0 Mt —)Vn(r, ¢y dt' — (e_/kT)fO. M —thn(r, )EQ) & (N

which leads to the generalized diffusion equation for the charge carrier density n(r, £):

I I
an(r, 1)/0r = f M@ —YVnlr, t) dt’ + (e/kT) f M@ =Hvnlr, YE@) dr.
0 : 0
2)

Here ¢ is the electron charge, k is Boltzmanns constant, T is the temperature and M (¢) is
the inverse Laplace transform of the frequency-dependent diffusivity, M {s), where s = iw.
Equations (1) and (2) are composed of a diffusion term and a field-dependent drift term.

We now consider the steady-state solution to equation (1) in the linear response regime
at small applied fields. For many electronic and ionic conductors one may assume that the
charge carrier density can be written as a constant,ng, plus possibly short-range fluctuations
due to the discrete nature of the transport process. Hence we do not consider effects due to
charge injection and inhomogeneous space charge distributions. Neglecting the fluctuations
in the charge carrier density we arrive at a macroscopic transport equation for the electrical
current dengsity, J{(t) = eJp(¢), which can be written as

J(6) = e(noe/ kT) [) ' Mt —O)EY) dt' = e(noe/RTYM () % E(2). 3)

Here we have introduced the symbol % to denote a convolution. The so-called Einstein
relation aliows the calculation of the frequency-dependent AC conductivity from the
diffusivity according to [27) '

o(s) = eng(eM(s)/kT). @

Generalized diffusion equations for fractal time processes (fractional Browaian motion)
and diffusive transport on fractal structures have recently been studied in detail by Giona
and Roman [28]. They find that transport properiies on fractals can be accurately modelled
by the solutions of fractional diffusion equations (FDEs) [29]. The FDEs are of the same
form as equation (2) without the drift term and with M {¢) being a power law of time. This
suggests that we can use the full equations {1)(3) to describe the motion of charge carriers
on a fractal structure due to a weak applied electrical field.
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When the diffusivity exhibits a power-law form, i.e. when M(f) ~ "7, the formalism
of fractional derivatives is very convenient to use. We denote the derivation operator by D
~ and-write for the fractional deri\fative, of order —n [24], of a function f (£}

DY) = (A/TENE +f0) ®

where T" denotes the gamma function. This definition is valid for # > 0, and can easily
‘be generalized to arbitrary n [24]. The Laplace transform of equation (5) is simply s™"
multiplied by the Laplace transform of f (*) [24] This is a speclal case of the product nule
for the Laplacian of a convolution. ‘

The charge carriers in disordered matenals can be of two kinds that we call quasn-free
and bound. The expression ‘quasi-free’ is used in order to avoid confusion with free-
electron conduction in metals. The quasi-free charge carriers can move in the material over
magcroscopic distances and give rise to a DC conductivity at low frequencies, or alternatively.
to a so-called low-frequenéy dispersion [30]. .In this case the complex resistivity, o(2), is
used as a dielectric response function. It is deﬁned so that p(.s') I/o(s). By rearranging

-equatlan (3) we obtam

E(:):p(t)*J(:'j _ | B o - ®

- in the nme domam The correspondmg equation in the frequency domam is

eO=EONe. o

~ On the other hand, for the bound charge carriers; it is more appropriate to consider the
_ relaxation of the polarisation P(¢) towards the equilibrium value Py(z) = xoE(). Here
" Xo is the static dl&iECtl’lC susceptibility. Since J(f) = DP(f) and the dnvmg force for the
process is Po(t) - P(t), the relaxation equatlon becomes [31] :

DP(r)zM(r)*(Pu(:)—P(t)) o o ®

which is a straightforward generalization of the ‘Debye equatlon The proper response
function is now the dielectric susceptibility, which- can be obtained from the frequency
domain equation ' : '

X@) =PEY/ES). - L ®

In the next section these general formulae are- applled to the cases of fractal structures and
fractal time processes.

3. Fractal conduction processes

In this section, we treat conduction on fractal aggregates, conduction phenomena at fractal
surfaces and fractal time processes. We give expressions for M(¢) or its Laplace transform
M(s) for these cases, in order to-derive the dielectric properties from the formalism in
section 2. Explicit forms are suggested for the dielectric - ‘Tesponse funcuons of fractal
processes with an upper cut-off, both for bound and quasi-free charges.
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3.1. Conduction on fractal aggregates

We consider 2 random walk on a fractal structure [32,33). The length scale, L(f), covered
by the random walk is related to time by the random walk dimension, dy:

L(t) o g o g~V (10)
This leads to a time- or frequency-dependent diffusion coefficient given by
D(s) = L2(8)/t ~ sL2(s) ~ 5% (11)

where D(s) is actually equal to the diffusivity M (s) in equations (1)~(3). Note, however,
that D(r) s M(z). The AC conductivity for this case must be scaled in the diffusion volume
{34] and is not directly proportional to M(s). Taking this into account we obtain [3, 34]

o(s) 2 (L(s) M (s) e '8 (12)
where dy denotes the fractal dimension of the aggregate. The length scale exponent dy — 2
arises from the cross-sectional area divided by the length of the diffusion volume. The
equation analogous to equation (3), which describes conduction on a fractal aggregate, then
becomes .

J(#) D'/ E(r) = D"E(2) (13)
where we have included the effect of scaling in the diffusion volume.

3.2. Conduction processes at fractal surfaces

Various conduction phenomena can occur at or in the immediate vicinity of fractal surfaces.
These processes can be described by equation (13) but with other values of the exponent
n. For the case of diffusion-limited charge transport at a fractal interface it is realized that
dw = 2 and hence [14, 15,35]
o (s) = (L(s)% T o st 112, (14)
The transport equation is still equation {13) with » = (dr — 1)/2.
Another case concerns charge transport on a fractal surface. There exist strong
indications [36] that for a wide class of surfaces one should use 4, = d;. We obtain
o (s) = M(s) = s'=%4 (13)
and hence equation (13} is valid with n = | — 2/d;. This result was earlier obtained by
Radoev and Tenchov [37].
The dielectric response of fractal biocking electrodes has recently attracted much

attention [13-17]. It seems that the behaviour of such electrodes is very dependent on
the specific fractal model chosen {14, 15].

3.3. Fractal time processes

For fractal time processes [10], it is well known that the conductivity is proportional to the
diffusivity and scales as [2]

o(s) 2 M(s) ~ s~ (16)
where di(= 2/d,) is the dimensionality of the process. Hence the transport equation is
given by equation (13) withn =1 —d,.

A fractal time process can be described by a distribution of waiting times [10). Electrical
conduction in an exponential distribution of activation energies constitutes a simple example
(2,38]. A more complicated situation occurs when a fractal time process is operating
on a fractal structure. In this case the value of the random walk dimension defined by
equation (10) is itself changed by the presence of the waiting time distribution. This
problem has been studied in detail by Harder et al [39] by use of simple scaling arguments.
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34. Analync, response functions .

This section is concluded with some arguments giving the form. of the dlelectnc response
function for one fractal process. We make use of the fact that a fractal structure cannot
extend to arbitrarily large length scales, nor can a fractal time process extend to infinitely
long times. In situations encountered in practice there must be an upper cut-off to the fractal
region. The AC conductivity is given by a power law for fractal processes; this is described .
by the transport equation J(#) ~ D" E(#). Next the mﬁuence of the cut-off for bound and
quasi-free charge carriers is investigated. -

- For the case of bound charges, the polarization is relaxmg towards equxhbnurn and
the effect of the upper cut-off is included in the equilibrium polarizability Pu(r). When
conduction takes place on a finite fractal aggregate the cut-off is related to the size of the
aggregate. From equation (8) we obtain DP(r) = D" (Fo(t) — P(¢)) and hence '

X6 = PG/ =0/ (1 + G0 D

where T is a characteristic relaxation time characterising the upper cut-off. Equation (17)
describes a relaxation peak in the frequency domain. It was proposed long ago by Cole and
Cole {40] as an empirical formula describing the relaxation of various dielectric materials.
For quasi-free charge carriers, equations (6) and (7) were employed in order to determine
the complex resistivity p(s). The transport equation can be expressed as E(t) ~D™"J 0,
which- means that the time-dependent resistivity has a power-law form and can be written

. as

pt) = " Vexp(—tfz). : . (18)

Here an exponential cut-off to the power-law behaviour of the resistivity has been introduced.
Again 1 is a relaxation time corresponding to the upper cut-off. We propose the simple
exponential cut-off because now equation (18) reduces to an exponential function in the
non-fractal limit (# = 1), as it should. The Laplace transform of equanon (18) gives the
final result for the response function according to

,_o_(s)= po/ (1 +57)" o " a9y

where py is the DC resistivity. This equation is of the same form as the well known empirical
Davidson—Cole (DC) formula [41]. -

An alternative choice for. the-time-dependent - resistivity would be to take o(f) =~
exp(—(¢/7)'™), which leads to the so-called stretched exponential form for the response
function {42]. In this case we have a slower cut-off than in the DC formula. In cases where
the two approaches give noticeably different results, it appears that expenmental data favour
the DC expression [21,43].

‘In disordered materials theré may exist a distribution of the relaxation times that
characterize the upper cut-offs. Hence the Cole—Cole and Davidson—Cole furictions may
have to be averaged over such distributions, One example arises in- percolatlon theory,
. where one has to average over a power—law dlsmbutmn of cluster suces [9 441,

4. Combmatmns of two fractal processes

A situation’ where two power-law processes are present in the dielectric propemes and
operate on different time scales is- frequently encountered. One example of this is the so
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called low-frequency dispersion [2,30]. Different approaches have been put forward for
the derivation of the response function in this situation, and we think that further work
is needed. Le Mehaute and Crepy [12,31] considered two fractal processes connected in
series so that '

E(r) = D"G(t) = D™ (D-9J(£)) = D" 41 (¢) (20)

where G(#) denotes an intermediate physical quantity. Equation (20) describes the composite
response function as the convolution of the response functions of the fractal processes.
Furthermore, it is implied that ¢(s) = 5™*9, The complete dielectric response function is
in general very coniplex, because the two processes have both lower and upper cut-offs that
can occur at different times. Ewvidence for the addition of power-law indices, implied by
equation (20), has been found in experiments on solid polymer electrolytes {31}. For these
materials, charge transfer at the electrodes dominates the impedance at high frequencies,
whereas at low frequencies, the charge transfer couples to bulk diffusion according to
equation (20) [31].

By introducing an exponential cut-off, as in equation (18), for one of the processes, we
can derive a simple theory for the low-frequency dispersion [30]. We assume that the two
fractal processes couple in the high-frequency region, and that only one of them prevails at
low frequencies. The complex resistivity is then obtained from

o) = "7 Zexp(—t/T) %t~ D

where the power-law indices m and g in equation (20) have béen chosen in order to reproduce
the empirically found {2, 30] asymptotic behaviour at short and long times. Note that n and
p can only take values between zero and unity. The Laplace transform is easily found and
gives a generalized DC (GDC) expression, namely

o) = )P (1 +sT)"tPL : 22)

Dissado and Hill (DH) {45,46], on the other hand, made use of a related procedure for the
dielectric susceptibility response function and found that

x () 2 7 (7" exp(—t/7) * £7). (23)

We conjecture that a convolution in the susceptibility (proportional to the capacitance)
corresponds to processes operating in parallel. Since the DH theory has been used extensively
in the fitting of experimental data [46] it is of interest to compare the GDC and DH theories.
The power-law exponents have been chosen so that the asympiotic power-law regions at
high and low frequencies are equal, but differences arise in the crossover between the
two power laws. This is seen in figure 1, where we depict the inverse loss tangent,
tan @ = (p2{w)/p1(®)), as a function of frequency, w. Here p; and p; denote the imaginary
and real parts of the resistivity, respectively. We chose a high value of n = 0.95 in the
computation in order to study a case with a wide crossover region. It is seen that for p =
1, when the 6DC theory becomes equal to the DC expression (19), the agreement with the
DH theory is very good. However, discrepancies arise for lower values of p; in particular,
the approach to the low-frequency asymptote is slower for the DH theory than for the GDC
theory. The differences are studied in more detail in figure 2, where we plot the loss tangent
for the cases p = 0.5 and p = 0.8. In this plot the low-frequency region is amplified and the
discrepancies are readily seen. It should be possible to distinguish between the two theories
by careful experiments. .

It should also be mentioned that Macdonaid [38] has proposed a scheme for averaging
over two exponential distributions of activation energies. The distributions exist for energies
less than and larger than a certain cut-off energy, respectively.
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- Figure 1. Inverse loss tangent as a fanction of frequency for the generalized Davidson-Cole
(6pc) and Dissado-Hill {DH) theories. The frequency scale has been normalized so that the
theories coincide at a frequency of 5 units. Caleulations from the 6DC and DH theories with

) exponems n=095and p= 0.5 and 1.0 are given by the symbols shown in the ﬂgure.
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Figare 2.  Loss tangent as a function of frequency for the generalized Davidson~Cole (GDC) =
* and Dissado~Hill (DH) theories. The frequency scale has been normalized so that the theories

coincide at a frequency of 5 units. Calculations from the GDC and DH theories with exponents n

=095 and p = 0.5 and 0.8 are given by the symbols shown in the figure.

5. Discussion

_We conclude by discussing the experimental relevance of the response functions derived
in sections 3 and 4. For the case of bound charge carriers, there exist some experlmental
problems First, it is difficult to ascertain whether a relaxation peak is due to charge carriers
or to some other effect such as dipoles. . Secondly, in materials where charge carriers are
“assumed to be dominating the dielectric response, relaxation peaks are frequently seen
superimposed on a background due to the quasi-free charges. This introduces uncertainties
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in the determination of the response function, since it must be separated from that of the
background. Despite this, some evidence for equation (17) actually exists. Hill [47] has
analysed the dielectric response of Si0;, Pt-Si0; and some chalcogenide glasses. The
contributions due to bound and quasi-free charge cartiers were separated. In five out of six
analysed samples it seems that the relaxation peak due to bound charge carriers has a shape
similar to that obtained from the Cole-Cole formula [47]. More work is needed in order to
firmly establish equation (17) and to find out whether other factors may affect the dielectric
response.

Various dielectric response functions that have been proposed for the case of quasi-free
charge carriers were compared recently [21]. It was found that the DC theory, equation (19),
gives a better agreement with experiments on thin films of Al,Os, silicon oxynitrides and
Si0; {21] than alternative dielectric response functions, namely the stretched exponential
and a simple averaging over a power-law distribution of transition rates {DTR}. In addition
the DC relation is in good agreement with experimental data for some ionic conductors
[43,48]. In figure 3, we depict the inverse loss tangent for a silver-iodide-silver-borate
glass [48,49] as a function of frequency. It is seen that the DC theory is in much better
agreement with experiments than either the DTR or stretched exponential response functions.
In all of these cases the exponent p could not be distinguished empirically from unity, hence
the GDC theory in section 4 was not used. We remark that the overall similarity with the
DH predictions makes the GDC theory an interesting alternative for the description of low-
frequency dispersion [30].

INVERSE LOSS TANGENT
T

107 1 107 - 10
NORMALIZED FREQUENCY (Hz)

Figure 3. Inverse loss tangent as a function of frequency for (Agllo.s(Agz0:2B203)p4 glass.

Squares denote our measurements at 87 K, while circles denote measurements from [49] at

123 K. Curves denote caloulations with n = 0.75 using the Davidson-Cole {oc), powerlaw

distribution of transition rates {DTR) and stretched exponential (Kww) expressions, as shown in
the top left of the figire,

It should be emphasized that the approach to the dielectric response in this paper is
restricted to the case when the charge-carrier density is essentially constant, For cases
in which charge injection, space charges or decay of the charge-carrier density due to
recombination or trapping occur, the full generalized diffusion equation (equations (1) and
(2)) has to be solved. For example, it is known that the diffusivity and the particle decay
exhibit different asymptotic behaviour at long times [50]. Measurements of both quantities
may be used to distinguish behaviour due to fractal time and fractal structures [50].

In conclusion, dielectric response functions were derived for fractal conduction
processes. These expressions can be compared to experimental data as well as to other



theoretlcal approaches. Several recent expenmcnts appear to support a fractal mterpretauon_
of the dielectric response due to quasi-free and bound charge carners

Acknowledgments

This work was ﬁnancxally supported by grants from the Swedish Natural Science Research
Council and the Swedish Technical Research Council. Va]uable discussions with J R Stevens
are gratefully apprec1ated

References

{11 Jonscher A K 1983 Dielectric Relaxation in Solids (London: Clielsea Dleleclncs)
{21 Niklasson G A 1987 J. Appl. Phys. 62 R1; 1989 Physica D 38 260
[31 Clerc 1 P, Treamblay A-M S, Albinet G and Mitescu C D 1984 J. Phys. Lets. 45 1.913
[4] Nigmatullin R R 1986 Phys. Status Solidi b 133 425
[S] Gefen Y, Aharony A and Alexander S 1983 Phys. Rev. Lett. 50 77
[6] Havlin S and Ben-Avraham D 1987 Adv. Phys. 36 695 .
[7) Efros A L and Shklovskii B [ 1976 Phys. Status Solidi b 76 475
{81 Stroud D and Bergman D J 1982 Phys. Rev. B 25 2061
91 ClercJ P, Giraud G, Laugier ] M and Luck ] M 1990 Adv. Fhys. 39 191
[10] Shlesinger M F 1988 Ann. Rev. Phys. Chem. 39 269
[11] Chen H and Wu X 1988 Z. Phys. B 71 387
{12] Le Mehaute A and Crepy G 1983 Solid State fonics 9-10 17
Le Mehaute A 1984 J. Stat, Phys. 36 665
[13] Liu S H 1985 Phys. Rev. Lert. 55 529
Liu 8 H, Kaplan T and Gray L J 1986 Solid State lonics 18-9 65
[14] Myikos L and Pajkossy T 1990 Phys. Rev. B 42 708
Pajkossy T 1991 J. Electroanal. Chent. 300 1
[15] Sapoval B, Chazalviel J-N and Peyriere ] 1988 Phys. Rev. A 38 5867
{16] Geertsma W, Gols J E and Pietronero L 1989 Physica A 158 691
{171 Blunt M 1989 J. Phys. A: Math. Gen, 22 1179 |
[18] Maritan A and Toige F 1990 Electrochim, Acta, 35 141
[191 Hill R M, Dissado L A and Nigmarullin R R 1991 J. Phys.: Condens, Matter 3 9773
[20] Dissado L A and Hill R M 1989 /. Appl. Phys. 66 2511°
[21] Niklasson G A 1989 J. Appl. Phys. 66 4350
122} Butcher P N 1978 Phil. Mag. B 37 653
. Butcher P N and Clark 1 D 1981 Phil, Mag. B 43 1029
[23] Leal Ferreira G F 1977 Phys. Rev. B 16 4719
[24] -Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academlc)
‘[25] Klafter § and Silbey R 1980 Phys. Rev. Lett. 44 55
(26] Kenkre V M and Knox R § 1974 Phys, Rev. B 9 5279
[27] Scher H and Lax M 1973 Phys, Rev, B 7 4491
[28] Giona M and Roman H E 19927, Phys. A: Muth. Gen. 25 2093
Roman H E and Giona M 1992 .1, Phys. A: Math. Gen. 25 2107
{291 Wyss W 1986 J. Marh. Phys. 27 2782
[30] Jonscher A K 1978 Phil. Mag. B 38 587 .
31] Le Mehawe A 1989 The Fructal Approach to Heterogeneous Chemistry ed D Avnir (New York: Wiley) p -
31128 .
{32] Alexander S and Orbach R 1982 J. Phys. Lent. 43 1625
[33]1 Rammal R and Toulouse G 1983 J. Phys. Let. 44 L13
. [34] Liu 8 H ]986 Solid State Physics vol 39 (New York: Academic) p 207
[351 Wong P-Z 1987 AIP Conf. Proc. 154 304 ! )
[36] Giugliarelli G, Maritan A and Siella A L 1990 Europhys. Lett. 11 101
1371 Radoev B P and Tenchov B G 1987 J. Phys. A: Math. Gen. 20 L159

Fractal description of dielectric response : 4 A28 o e



4242

[38]
[39]
{401
[41]
[42]
[43]
{44]
[45]
[46]
147]
[43]
[49
[50]

G A Niklasson

Ross Macdonald J 1985 J. Appl. Phys. 58 1971; 1987 J. Appl. Phys. 62 R51

Harder H, Havlin S and Bunde A 1987 Phys. Rev. B 36 3574

Cole K S and Cole R H 1941 J. Chem. Phys. 9 341-

Davidson D W and Cole R H 1951 J. Chem. Phys. 19 1484

Moynikan C T, Boesch L P and Laberge N L 1973 Phys. Chem. Glasses 14 122
Pathmanathan K and Stevens J R 1990 J. Appl. Phys. 68 5128

Stauffer D 1985 Introduction to Percolation Theory (London: Taylor and Francis}
Dissado L A and Hill R M 1983 Proc. R. Soc A 390 131

Dissado L A and Hill R M 1984 J. Chem. Soc. Faraday Trans. 11 80 291

Hill R M 1985 Thin Solid Films 125 277

Niklasson G A, Brantervik K and Bttjesson L 1991 J, Non-Cryst. Solids 131~3 1096
Birjesson L, Torell L M, Liu C, Martin § W and Angell C A 1987 Phys. Lett. 1254 330
Blumen A, Klafter J, White B § and Zumofen G 1984 Phys. Rev. Ler. 53 1301



