
A fractal description of the dielectric response of disordered materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 4233

(http://iopscience.iop.org/0953-8984/5/25/013)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys: Condens. Matter5 (1993) 4233-1242. Rinted in the UK 

A fractal description of the dielectric response of disordered 
materials 

G A Niklasson 
Physics Depamnent Chalmen thIw"ly of Technology, S-41296 Goteborg, Sweden 

Received 19 February 1993 

Abstract. We use a generalized diffusion equation to derive theories for the dielectric response 
of materials exhibiting fractal dynamics. Earlier results for the relaxation of charge carriers on 
fractal aggregates and fractal surfaces, as well as by fractal time processes, are obtained by 
simple scaling arguments. It is argued that the existence of cut-offs to the fractal S ! N C I ~ S  and 
processes leads to dielectric response functions ofthe Cole-Cole form for bund charge carriers 
and of the Davidson-Cole form for quasi-fne charge carriers. A novel expression is proposed 
for the case of a convolution of two fractal pmesses. These response functions are compared 
with other theoretical ueatments and their relevance for experiments is assesseb 

1. Introduction 

It is by now well established that power-law relations in the frequency and time domains are 
a common feature of the dielectric properties of virtually all materials [I]. The existence of 
these power-law relations suggests a self-similarity in the underlying physical processes and 
it is therefore not surprising that fractals have been invoked repeatedly as an explanation 
of the dielectric response (see [2] and references therein). There exists a large literature on 
this subject which deals with the dielectric properties of fractal aggregates [3,4], anomalous 
diffusion [5,6], percolation clusters [7-91, fractal time processes [IO, 111 and fractal surfaces 
[12-18] as well as general fractal circuits 1191. Considerable effort has recently been devoted 
to the study of the relationship between the tkactal approach and previous empirical and 
theoretical relations [ZO,Zl]. 

In this paper we elucidate the relationship between the various fractal approaches to 
the dielectric response and propose a closed form for the response function of a fractal 
process with an upper cut-off. We make use of a generalized diffusion equation [22,23] 
and show that in the case of fractal processes the results can be expressed in the formalism 
of fractional calculus [24]. The methods used to obtain the dielectric response function are 
briefly reviewed. Capacitive as well as conductive processes are considered. Subsequently, 
in section 3 we consider the special cases of fractal aggregates, fractal surfaces and fractal 
time. The effects of cut-offs to the fractal processes are of crucial importance for obtaining 
response functions that can be compared to experimental data. In section 4 we treat the effect 
of two coexisting fractal processes, with different cut-offs, in the same material. Various 
approaches to the derivation of the dielectric response in this case are possible. Finally, 
in section 5 the main results of the paper and their possible experimental verification are 
discussed 
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2. Basic formalism 

The motion of charge carriers in disordered materials can often be described as a diffusive 
process. The motion of a single charge carrier between localized states is then modelled as 
a discrete random walk. Here we are. interested in the average behaviour of the physical 
quantities, which is the result of the average motion of many charge carriers. Hence, the 
effects of configurational averaging on the transport process are extremely important 

The configurational averaging leads to a generalized master equation if the microscopic 
transport process in each configuration is taken to be described by a master equation [U]. 
A generalized diffusion equation can be obtained as the continuum limit of the generalized 
master equation [2,23,26].  The case of electrical transport under an applied electric field, 
E @ ) ,  was treated by Leal Ferreira [23] and others (see. e.g. [22]). Butcher [22] obtained 
the constitutive relation for the particle current density: 

which leads to the generalized diffusion equation for the charge carrier density n(T ,  2): 

an(T, t ) / &  = M ( t  - t’)v2n(r, t’) dt‘+ (e /kT)  M ( t  - t’)vn(r,  t’)E(t‘) dt‘. 

(2) 

Here e is the electron charge, k is Boltzmann’s constant, T is the temperature and M ( t )  is 
the inverse Laplace transform of the frequency-dependent diffusivity, M ( s ) ,  where s = iw. 
Equations (I)  and (2) are composed of a diffusion term and a field-dependent drift term. 

We now consider the steady-state solution to equation (1) in the linear response regime 
at small applied fields. For many electronic and ionic conductors one may assume that the 
charge &er density can be written as a constant,no, plus possibly short-range fluctuations 
due to the discrete nature of the transport pmess. Hence we do not consider effects due to 
charge injection and inhomogeneous space charge distributions. Neglecting the fluctuations 
in the charge carrier density we arrive at a macroscopic transport equation for the electrical 
current density, J ( t )  = eJp(r), which can be written as 

l l 

Here we have introduced the symbol * to denote a convolution. The so-called Einstein 
relation allows the calculation of the frequency-dependent AC conductivity from the 
diffusivity according to [27] 

00) = eno(eM(s)/kT).  (4) 

Generalized diffusion equations for fractal time processes (fractional Brownian motion) 
and diffusive transport on fractal structures have recently been studied in detail by Giona 
and Roman [28]. They find that transport propeaies on fractals can be accurately modelled 
by the solutions of fractional diffusion equations (FDES) [29]. The DES are of the same 
form as equation (2) without the drift term and with M(t) being a power law of time. This 
suggests that we can use the full equations (lt(3) to describe the motion of charge carriers 
on a fractal structure due to a weak applied electrical field. 
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When the diffusivity exhibits a power-law form, i.e. when M ( t )  Y PI, the formalism 
of fractional derivatives is very convenient to use. We denote the derivation operator by D 
and write for the fractional derivative, of order -n 1241, of a function f ( t )  

D-” f (I) = (l/r(n))(P-’ * f ( t ) )  (5) 

where r denotes the gamma function. This definition is valid for n 0, and can easily 
be generalized to arbitrary n [24]. The Laplace transform of equation (5) is simply s-” 
multiplied by the Laplace transform of f ( t )  [24]. This is a special case of the product rule 
for the Laplacian of a convolution. 

The charge carriers in disordered materials can be of two kinds that we call quasi-free 
and bound. The expression ‘quasi-free’ is used in order to avoid confusion with free- 
electron conduction in metals. The quasi-free charge carriers can move in the material over 
macroscopic distances and give rise to a LX conductivity at low frequencies, or alternatively 
to a so-called low-frequency dispersion [30]. In this case the complex resistivity, p(t) ,  is 
used as a dielectric response function. It is defined so that p(s) = I/&). By rearranging 
equation (3) we obtain 

EO) = P ( t )  * J ( t )  

in the time domain. The corresponding equation in the frequency domain is 

P b )  = W ) / J ( s ) .  (7) 

On the other hand, for the bound charge carriers, it is more appropriate to consider the 
relaxation of the polarisatlon P ( t )  towards the equilibrium value P&) = X o E ( f ) .  Here 
xo is the static dielectric susceptibility. Since J ( t )  = DP(f) and the driving force for the 
process is Po(r) - P ( f ) ,  the relaxation equation becomes [31] 

D P ( t )  Y M ( t )  * (Po@) - P ( t ) )  (8) 

which is a straightfoward generalization of the Debye equation. The proper response 
function is now the dielectric susceptibility, which can be obtained from the frequency 
domain equation 

- 

X W  = P ( s ) / E ( s ) .  (9) 

In the next section these general formulae are applied to the cases of fractal structures and 
fractal time processes. 

3. Fractal conduction precesses 

In this section, we treat conduction on fractal aggregates, conduction phenomena at fractal 
surfaces and fractal time processes. We give expressions for M(t)  or its Laplace transform 
M(s) for these cases, in order to derive the dielectric properties from the formalism in 
section 2. Explicit forms are suggested for the dielectric response functions of fractal 
processes with an upper cut-off, both for bound and quasi-free charges. 
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3.1. Conduction on fractal aggregates 
We consider a random walk on a fractal structure [32,33]. The length scale, L(t), covered 
by the random walk is related to time by the random walk dimension, dw: 

(10) 
This leads to a time- or frequency-dependent diffusion coefficient given by 

(11) 
where D(s) is actually equal to the diffusivity MO) in equations (1H3). Note, however, 
that D(t)  # M(t) .  The AC conductivity for this case must be scaled in the diffusion volume 
[34] and is not directly proportional to M(s). Taking this into account we obtain [3,34] 

(12) 
where df denotes the fractal dimension of the aggregate. The length scale exponent df - 2 
arises from the cross-sectional area divided by the length of the diffusion volume. The 
equation analogous to equation (3). which describes conduction on a fractal aggregate, then 
becomes 

~ ( t )  2: t l / d w  s - W w .  

D(s)  2 L2(t)/t - sL2(s) - s ' " ' ~  

u(s) = (L(S))+ZM(S) N s'-d'/d, 

J ( t )  2 D'-dr/dwE(t) = D"E(t) (13) 
where we have included the effect of scaling in the diffusion volume. 

3.2. Conduction processes at fractal swfaces 
Various conduction phenomena can occur at or in the immediate vicinity of fractal surfaces. 
These processes can be described by equation (13) but with other values of the exponent 
n. For the case of diffusion-limited charge transport at a fractal interface it is realized that 
dw = 2 and hence [14,15,351 

The transport equation is still equation (13) with n = (dt - 1)/2. 

indications [361 that for a wide class of surfaces one should use d, = df. We obtain 

and hence equation (13) is valid with n = I - 2/df. This result was earlier obtained by 
Radoev and Tenchov 1371, 

The dielectric response of fractal blocking electrodes has recently attracted much 
attention [13-17]. It seems that the behaviour of such electrodes is very dependent on 
the specific fractal model chosen 114,151. 

3.3. Fractal time processes 
For fractal time processes [IO], it is well known that the conductivity is proportional to the 
diffusivity and scales as [2] 

(16) 
where dt(= 2/dw) is the dimensionality of the process. Hence the transport equation is 
given by equation (13) with n = I - dt. 

A fractal time process can be described by a distribution of waiting times [lo]. Electrical 
conduction in an exponential distribution of activation energies constitutes a simple example 
[2,38]. A more complicated situation occurs when a fractal time process is operating 
on a fractal structure. In this case the value of the random walk dimension defined by 
equation (IO) is itself changed by the presence of the waiting time distribution. This 
problem has been studied in detail by Harder et a1 [39] by use of simple scaling arguments. 

u(s )  2: (L(s))d'-' = SI+1Jfl. (14) 

Another case concerns charge transport on a fractal surface. There exist strong 

U(,) = M(s) Zzs1-2'dr (15) 

u(s) 2 M ( s )  2: SI-4 
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3.4. Analytic response functions 

This section is concluded with some arguments giving the form of the dielectric response 
function for one fractal process. We make use of the fact that a fractal structure cannot 
extend to arbitrarily large length scales, nor can a fractal time process extend to infinitely 
long times. In situations encountered in practice there must be an upper cut-off to the fractal 
region. The AC conductivity is given by a power law for fractal processes; this is described 
by the transport equation J ( t )  2: I Y E f t ) .  Next the influence of the cut-off for bound and 
quasi-free charge camers is investigated. 

For the case of bound charges, the polarization is relaxing towards equilibrium and 
the effect of the upper cut-off is included in the equilibrium polarizability Po@). When 
conduction takes place on a finite fractal aggregate the cut-off is related to the size of the 
aggregate. From equation (8) we obtain DP(r) E D"(Po(t) - P(t)) and hence 

xw = X O P ( S ) / ~ O D )  = xo/(l+ (SrF") (17) 

where r is a characteristic relaxation time characterising the upper cut-off. Equation (17) 
describes a relaxation peak in the frequency domain. It was proposed long ago by Cole and 
Cole 1401 as an empirical formula describing the relaxation of various dielectric materials. 

For quasi-free charge carriers, equations (6) and (7) were employed in order to determine 
the complex resistivity p(s). The transport equation can be expressed as E(r)  Y D-"J(t), 
which means that the time-dependent resistivity has a power-law form and can be written 
as 

p(t)  2: t"-l exp(-t/r). (18) 

Here an exponential cut-off to the power-law behaviour of the resistivity has been introduced. 
Again r is a relaxation time corresponding to the upper cut-off. We propose the simple 
exponential cut-off because now equation (IS) reduces to an exponential function in the 
non-fractal limit (n = I), as it should. The Laplace transform of equation (18) gives the 
final result for the response function according to 

P ( S )  = pd(1  f s r ) "  (1% 

where po is the Dc resistivity. This equation is of the same form as the well known empirical 
Davidson-Cole (DC) formula [41]. 

An alternative choice for the timedependent resistivity would be to take p(t) 2: 
exp(--(t/r)'-"), which leads to the so-called stretched exponential form for the response 
function [42]. In this case we have a slower cut-off than in the DC formula. In cases where 
the two approaches give noticeably different results, it appears that experimental data favour 
the DC expression [21,43]. 

In disordered materials there may exist a distribution of the relaxation times that 
characterize the upper cut-offs. Hence the Cole-Cole and Davidson-Cole functions may 
have to be averaged over such distributions. One example arises in percolation theory, 
where one has to average over a power-law distribution of cluster sizes C9.441. 

- 

4. Combinations of two fractal processes 

A situation where two power-law processes are present in the dielectric propelties and 
operate on different time scales is frequently encountered. One example of this is the so 
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called low-frequency dispersion [2,30]. Different approaches have been put forward for 
the derivation of the response function in this situation, and we think that further work 
is needed. Le Mehaute and Crepy I12.311 considered two fractal processes connected in 
series so that 

E( t )  z D-"'G(t) 'V D-m(D-4J(t)) = D-"*J(t) (20) 
where G(t )  denotes an intermediate physical quantity. Equation (20) describes the composite 
response function as the convolution of the response functions of the fractal processes. 
Furthermore, it is implied that u(s)  z sm+4. The complete dielectric response function is 
in general very complex, because the two processes have both lower and upper cut-offs that 
can occur at different times. Evidence for the addition of power-law indices, implied by 
equation (20), has been found in experiments on solid polymer electrolytes [31]. For these 
materials, charge transfer at the electrodes dominates the impedance at high frequencies, 
whereas at low frequencies, the charge transfer couples to bulk diffusion according to 
equation (20) 1311. 

By introducing an exponential cut-off, as in equation (18). for one of the processes, we 
can derive a simple theory for the low-frequency dispersion 1301. We assume that the two 
fractal processes couple in the high-frequency region, and that only one of them prevails at 
low frequencies. The complex resistivity is then obtained from 

(21) 
where the power-law indices m and q in equation (20) have been chosen in order to reproduce 
the empirically found [2,30] asymptotic behaviour at short and long times. Note that n and 
p can only take values between zero and unity. The Laplace transform is easily found and 
gives a generalized DC (CDC) expression, namely 

p ( t )  rr t"+P-* exp(-t/r) * t - P  

p ( s )  rr (sr)P-'/(l +sr)"+P-'. (22) 
Dissado and Hill (DH) 145,461, on the other hand, made use of a related procedure for the 
dielectric susceptibility response function and found that 

(23) 
We conjecture that a convolution in the susceptibility (proportional to the capacitance) 
corresponds to processes operating in parallel. Since the OH theory has been used extensively 
in the fitting of experimental data 1461 it is of interest to compare the GDC and DH theories. 
The power-law exponents have been chosen so that the asymptotic power-law regions at 
high and low frequencies are equal, but differences arise in the crossover between the 
two power laws. This is seen in figure 1, where we depict the inverse loss tangent, 
tan9 = (m(o)/pl(o)), as a function of frequency, U. Here pz and p 1  denote the imaginary 
and real parts of the resistivity, respectively. We chose a high value of n = 0.95 in the 
computation in order to study a case with a wide crossover region. It is seen that for p = 
1, when the GDC theory becomes equal to the DC expression (19), the agreement with the 
DH theory is very good. However, discrepancies arise for lower values of p; in particular, 
the approach to the low-frequency asymptote is slower for the DH theory than for the GDC 
theory. The differences are studied in more detail in figure 2, where we plot the loss tangent 
for the cases p = 0.5 and p = 0.8. In this plot the low-frequency region is amplified and the 
discrepancies are readily seen. It should be possible to distinguish between the two theories 
by careful experiments. 

It should also be mentioned that Macdonald [38] has proposed a scheme for averaging 
over two exponential distributions of activation energies. The distributions exist for energies 
less than and larger than a certain cut-off energy, respectively. 

~ ( t )  'V t-l(t-"-pexp(-t/r) * t p ) .  
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in the detemination of the response function, since it must be separated from that of the 
background. Despite this, some evidence for equation (17) actually exists. Hill [47] has 
analysed the dielectric response of SiOl, Pt-SiOz and some chalcogenide glasses. The 
conmbutions due to bound and quasi-free charge carriers were separated. In five out of six 
analysed samples it seems that the relaxation peak due to bound charge carriers has a shape 
similar to that obtained from the C o l d o l e  formula [47]. More work is needed in order to 
firmly establish~equation (17) and to find out whether other factors may affect the dielectric 
response. 

Various dielectric response functions that have been proposed for the case of quasi-free 
charge carriers were compared recently [211. It was found that the DC theory, equation (19). 
gives a better agreement with experiments on thin films of A1203, silicon oxynitrides and 
Si02 [21] than alternative dielectric response functions, namely the stretched exponential 
and a simple averaging over a power-law distribution of transition rates (DTR). In addition 
the DC relation is in good agreement with experimental data for some ionic conductors 
143.481. In figure 3, we depict the inverse loss tangent for a silver-iodide-silver-borate 
glass 148,491 as a function of frequency. It is seen that the DC theory is in much better 
agreement with experiments than either the DTR or stretched exponential response functions. 
In aI1 ofthese cases the exponent p could not be distinguished empirically from unity, hence 
the GDC theory in section 4 was not used. We remark that the overall similarity with the 
DH predictions makes the GDC theory an interesting alternative for the description of low- 
frequency dispersion [301. 

- E ’ -  
f > -  z n i 0.75 

- 

0 I I I I 

10-2 t 102 lo4 
NORMALIZED FREQUENCY (Hrl 

Figure 3. Inverse loss tangent as a function of hequency for (AgI)o,s(Agz02B10a)~,~ glass. 
Squares denote our measuremen& at 87 K, while circles denote measuremen& from 1491 at 
133 K. Curves denote calculations with n = 0.75 using the Davidson-Cole (ne). power-law 
disuibution of transition mes (DTR) and stretched exponential (Kww) expressions. as shown in 
the top leh of the figure. 

It should be emphasized that the approach to the dielectric response in this paper is 
restricted to the case when the charge-carrier density is essentially constant. For cases 
in which charge injection, space charges or decay of the chargecarrier density due to 
recombination or trapping occur, the full generalized diffusion equation (equations (1) and 
(2)) has to be solved. For example, it is known that the diffusivity and the particle decay 
exhibit different asymptotic behaviour at long times [50]. Measurements of both quantities 
may used to distinguish behaviour due to fractal time and fractal structures [50]. 

In conclusion, dielectric response functions were derived for fractal conduction 
processes. These expressions can be compared to experimental data as well as to other 
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theoretical approaches. Several recent experiments appear to support a fracfd interpretation 
of the dielectric response due to quasi-free and bound charge carriers. 
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